Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: A Case Study of Alento, Italy

Water infiltration rate (WIR) into the soil profile was investigated through a comprehensive study harnessing spectral information of the soil surface. As soil spectroscopy provides invaluable information on soil attributes, and as WIR is a soil surface-dependent property, field spectroscopy may model WIR better than traditional laboratory spectral measurements. This is because sampling for the latter disrupts the soil-surface status. A field soil spectral library (FSSL), consisting of 114 samples with different textures from six different sites over the Mediterranean basin, combined with traditional laboratory spectral measurements, was created. Next, partial least squares regression analysis was conducted on the spectral and WIR data in different soil texture groups, showing better performance of the field spectral observations compared to traditional laboratory spectroscopy. Moreover, several quantitative spectral properties were lost due to the sampling procedure, and separating the samples according to texture gave higher accuracies. Although the visible near-infrared–shortwave infrared (VNIR–SWIR) spectral region provided better accuracy, we resampled the spectral data to the resolution of a Cubert hyperspectral sensor (VNIR). This hyperspectral sensor was then assembled on an unmanned aerial vehicle (UAV) to apply one selected spectral-based model to the UAV data and map the WIR in a semi-vegetated area within the Alento catchment, Italy. Comprehensive spectral and WIR ground-truth measurements were carried out simultaneously with the UAV–Cubert sensor flight. The results were satisfactorily validated on the ground using field samples, followed by a spatial uncertainty analysis, concluding that the UAV with hyperspectral remote sensing can be used to map soil surface-related soil properties.

How to cite: Francos, N.; Romano, N.; Nasta, P.; Zeng, Y.; Szabó, B.; Manfreda, S.; Ciraolo, G.; Mészáros, J.; Zhuang, R.; Su, B.; Ben-Dor, E.  Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: a Case Study of AlentoItalyRemote Sensing13, 2606, (doi: 10.3390/rs13132606) 2021. [pdf]

Special Issue on RS entitled Global Gridded Soil Information Based on Machine Learning

This Special Issue is dedicated to machine learning-based methods in:•proximal and digital global mapping of soil properties (e.g., basic, hydraulic, thermal, functional, ecosystem services);•computing systems/algorithms/approaches using Earth observation data to derive global gridded soil datasets;•preprocessing Earth observation data to feed into global soil mapping;•data-intensive computing methods for incorporating Earth observation data for predictive soil mapping;•optimizing temporal resolution to globally track the changes of soil properties;•uncertainty assessment of the derived gridded soil information;•other related topics.

A 40% discount can be granted to papers received from this conference/project on the basis that the manuscript is accepted for publication following the peer review process.

Website

Exploring the use of UAVs with the simplified ‘triangle’ technique for soil water content and evaporative fraction retrievals in a Mediterranean setting

Information acquired from Unmanned Aerial Vehicles (UAVs) is frequently used nowadays in a variety of disciplines and research fields. The present study explores for the first time the combined use of UAVs with a newly proposed technique for estimating evaporative fraction (EF) and surface soil moisture (SSM). The investigation is performed in a typical Mediterranean setting, a citrus field with flat topography divided in two plots with different irrigation schemes, in Sicily, Italy, at which ground data acquired during an extensive field campaign in July 2019. Reasonable estimates of both EF and surface wetness were produced, with patterns in agreement to vegetation cover fragmentation, topography, and other site-specific characteristics. Validation shows average error of 0.053 for EF and of 0.040 cm3 cm−3 for SSM. The results are comparable or better to those reported in analogous studies performed in similar areas. This implies that the investigated approach performs well under the semi-arid conditions characterizing the experimental set up. To our knowledge, this study represents the first evaluation of the combined use of the ‘simplified triangle’ with very high-resolution UAV imagery. As such, the findings are of significance regarding the potential future use of the ‘simplified triangle’ approach particularly with very fine resolution imagery such as that provided by UAV for mapping and monitoring EF and SSM in agricultural and natural ecosystems.

Figure: Maps of EF (a) and SSM (b) computed from the ‘simplified triangle’ implementation using the data retrieved with UAV.

How to cite: Petropoulos, G.P., A. Maltese, T. N. Carlson, G. Provenzano, A. Pavlides, G. Ciraolo, D. Hristopulos, F. Capodici, C. Chalkias, G. Dardanelli, S. Manfreda, Exploring the use of UAVs with the simplified “triangle” technique for Soil Water Content and Evaporative Fraction retrievals in a Mediterranean setting, International Journal of Remote Sensing, VOL. 42, NO. 5, 1623–1642, (doi: 10.1080/01431161.2020.1841319) 2021. [pdf]

A Geostatistical Approach to Map Near-Surface Soil Moisture Through Hyperspatial Resolution Thermal Inertia

Thermal inertia has been applied to map soil water content exploiting remote sensing data in the short and long wave regions of the electromagnetic spectrum. Over the last years, optical and thermal cameras were sufficiently miniaturized to be loaded onboard of unmanned aerial systems (UASs), which provide unprecedented potentials to derive hyperspatial resolution thermal inertia for soil water content mapping. In this study, we apply a simplification of thermal inertia, the apparent thermal inertia (ATI), over pixels where underlying thermal inertia hypotheses are fulfilled (unshaded bare soil). Then, a kriging algorithm is used to spatialize the ATI to get a soil water content map. The proposed method was applied to an experimental area of the Alento River catchment, in southern Italy. Daytime radiometric optical multispectral and day and nighttime radiometric thermal images were acquired via a UAS, while in situ soil water content was measured through the thermo-gravimetric and time domain reflectometry (TDR) methods. The determination coefficient between ATI and soil water content measured over unshaded bare soil was 0.67 for the gravimetric method and 0.73 for the TDR. After interpolation, the correlation slightly decreased due to the introduction of measurements on vegetated or shadowed positions (r² = 0.59 for gravimetric method; r² = 0.65 for TDR). The proposed method shows promising results to map the soil water content even over vegetated or shadowed areas by exploiting hyperspatial resolution data and geostatistical analysis.

How to cite: Paruta, A., P. Nasta, G. Ciraolo, F. Capodici, S. Manfreda, N. Romano, E. Bendor, Y. Zeng, A. Maltese, S. F. Dal Sasso and R. Zhuang, A geostatistical approach to map near-surface soil moisture through hyper-spatial resolution thermal inertia, IEEE Transactions on Geoscience and Remote Sensing, (doi: 10.1109/TGRS.2020.3019200) 2020. [pdf]

An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources

The past decades have seen rapid advancements in space-based monitoring of essential water cycle variables, providing products related to precipitation, evapotranspiration, and soil moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle variability at regional to global scales, they are less suitable for sustainable management of local water resources, which needs detailed information to represent the spatial heterogeneity of soil and vegetation. The following questions are critical to effectively exploit information from remotely sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to the local scale using multiple sources and scales of EO data? How to explore and apply the downscaled information at the management level for a better understanding of soil-water-vegetation-energy processes? How can such fine-scale information be used to improve the management of soil and water resources? An integrative information flow (i.e., iAqueduct theoretical framework) is developed to close the gaps between satellite water cycle products and local information necessary for sustainable management of water resources. The integrated iAqueduct framework aims to address the abovementioned scientific questions by combining medium-resolution (10 m–1 km) Copernicus satellite data with high-resolution (cm) unmanned aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-data analytics with machine learning algorithms. This paper provides a general overview of the iAqueduct theoretical framework and introduces some preliminary results.

Concept Diagram

How to cite: Su, Z.; Zeng, Y.; Romano, N.; Manfreda, S.; Francés, F.; Dor, E.B.; Szabó, B.; Vico, G.; Nasta, P.; Zhuang, R.; Francos, N.; Mészáros, J.; Sasso, S.F.D.; Bassiouni, M.; Zhang, L.; Rwasoka, D.T.; Retsios, B.; Yu, L.; Blatchford, M.L.; Mannaerts, C. An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water 202012, 1495. [pdf]

Quantifying Long-term Land Surface and Root Zone Soil Moisture over Tibetan Plateau

It is crucial to monitor the dynamics of soil moisture over the Tibetan Plateau, while considering its important role in understanding the land-atmosphere interactions and their influences on climate systems (e.g., Eastern Asian Summer Monsoon). However, it is very challenging to have both the surface and root zone soil moisture (SSM and RZSM) over this area, especially the study of feedbacks between soil moisture and climate systems requires long-term (e.g., decadal) datasets. In this study, the SSM data from different sources (satellites, land data assimilation, and in-situ measurements) were blended while using triple collocation and least squares method with the constraint of in-situ data climatology. A depth scaling was performed based on the blended SSM product, using Cumulative Distribution Function (CDF) matching approach and simulation with Soil Moisture Analytical Relationship (SMAR) model, to estimate the RZSM. The final product is a set of long-term (~10yr) consistent SSM and RZSM product. The inter-comparison with other existing SSM and RZSM products demonstrates the credibility of the data blending procedure used in this study and the reliability of the CDF matching method and SMAR model in deriving the RZSM.

How to cite: Zhuang, R.; Zeng, Y.; Manfreda, S.; Su, Z. Quantifying Long-term Land Surface and Root Zone Soil Moisture over Tibetan Plateau. Remote Sens. 202012, 509. [pdf]

Estimating root zone soil moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model

Root zone soil moisture (RZSM) affects many natural processes and is an important component of environmental modeling, but it is expensive and challenging to monitor for relatively small spatial extents. Satellite datasets offer ample spatial coverage of near-surface (0-2 cm) soil moisture content at up to a daily time-step, but satellite-derived data products are currently too coarse in spatial resolution to use directly for many environmental applications, such as those for small catchments. This study investigates using passive microwave satellite soil moisture data products in a simple hydrologic model to provide root zone soil moisture estimates across a small catchment over a 2 year time-scale and the Eastern U.S. (EUS) at a 1 km resolution over a decadal time-scale. The physically based Soil Moisture Analytical Relationship (SMAR) is calibrated and tested with the Advanced Microwave Scanning Radiometer (AMSRE), Soil Moisture Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP) data products. The SMAR spatial model relies on maps of soil physical properties and is first tested at the Shale Hills experimental catchment in central Pennsylvania. The model meets a root mean square error (RMSE) benchmark of 0.06 cm3 cm-3 at 66% of the locations throughout the catchment. Then, the SMAR spatial model is calibrated at up to 68 sites (SCAN and AMERIFLUX network sites) that monitor soil moisture across the EUS region, and maps of SMAR parameters are generated for each satellite data product. The average RMSE for RZSM estimates from each satellite data product is < 0.06 cm3 cm-3. Lastly, the 1 km EUS regional RZSM maps are tested with data from Shale Hills, which was set aside for validating the regional SMAR, and the RMSE between the RZSM predictions and the catchment average is 0.042 cm3 cm-3. This study offers a promising approach for generating long time-series of regional RZSM maps with the same resolution of soil property maps.

How to cite: Baldwin, D., S. Manfreda, H. Lin, and E.A.H. Smithwick, Estimating root zone soil moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model, Remote Sensing11, 2013, 2019. [pdf]

On the Use of Unmanned Aerial Systems for Environmental Monitoring

Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.

How to cite: Manfreda, S., M. F. McCabe, P. E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, E. Ben-Dor, D. Helman, L. Estes, G. Ciraolo, J. Müllerová, F. Tauro, M. I. de Lima, J. L. M. P. de Lima, A. Maltese, F. Frances, K. Caylor, M. Kohv, M. Perks, G. Ruiz-Pérez, Z. Su, G. Vico, and B. Toth, On the Use of Unmanned Aerial Systems for Environmental MonitoringRemote Sensing, 10(4), 641; (doi:10.3390/rs10040641) 2018.  [pdf

PROGETTI COMPETITIVI

[2020-23] Coordinatore locale del progetto intitolato “La mitigazione del rischio idraulico in bacini costieri con casse di espansione in linea: approccio di dimensionamento integrato” finanziato dal Ministero dell’Ambiente e della Tutela del Territorio e del Mare sul tema progetti di ricerca finalizzati alla previsione e alla prevenzione dei rischi geologici. Coordinatore Nazionale Prof. Francesco De Paola (Budget totale 260.000,00 €).

[2019-22] Coordinatore italiano del progetto WATER JPI 2018 intitolato “An integrative information aqueduct to close the gaps between global satellite observation of water cycle and local sustainable management of water resources – iAqueduct”. Coordinatore Europeo Prof. Bob Su (Budget totale 1.247.018,00 €).

[2019-22] Coordinatore di unità di ricerca del progetto “SPRINt – Strategie integrate per la PRevenzione e il monitoraggio del rischio INcendi e la sensibilizzazione delle comunità”, Fondazione SUD (Budget totale 361.536,00 €).

[2017-18] Coordinatore del Progetto “Pietro della Valle” sul tema “Monitoraggio dello stato di imbibizione dei suoli in ambienti semiaridi” finanziato dal MIUR (Budget totale 9.422,00 €).

[2018] Componente del progetto REDES sul tema: Bridge scour in supercritical flows, Chilean Research Council (Budget totale 10.000,00 $).

[2017-21] Coordinatore europeo dell’Azione COST intitolata “Harmonization of UAS
techniques for agricultural and natural ecosystems monitoring
” (Budget 780.000,00 €).

[2014-19] Componente del progetto “Technologies to stabilize soil organic carbon and farm productivity, promote waste value and climate change mitigation – CarbOnFarm” LIFE12 ENV/IT/00719 (Budget totale 3.051.265,00 €).

Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model

Monitoring Surface Soil Moisture (SSM) and Root Zone Soil Moisture (RZSM) dynamics at the regional scale is of fundamental importance to many hydrological and ecological studies. This need becomes even more critical in arid and semi-arid regions, where there are a lack of in situ observations. In this regard, satellite-based Soil Moisture (SM) data is promising due to the temporal resolution of acquisitions and the spatial coverage of observations. Satellite-based SM products are only able to estimate moisture from the soil top layer; however, linking SSM with RZSM would provide valuable information on land surface-atmosphere interactions. In the present study, satellite-based SSM data from Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Soil Moisture Active Passive (SMAP) are first compared with the few available SM in situ observations, and are then coupled with the Soil Moisture Analytical Relationship (SMAR) model to estimate RZSM in Iran. The comparison between in situ SM observations and satellite data showed that the SMAP satellite products provide more accurate description of SSM with an average correlation coefficient (R) of 0.55, root-mean-square error (RMSE) of 0.078 m3 m-3 and a Bias of 0.033 m3 m-3. Thereafter, the SMAP satellite products were coupled with SMAR model, providing a description of the RZSM with performances that are strongly influenced by the misalignment between point and pixel processes measured in the preliminary comparison of SSM data.

How to cite: Gheybi, F., P. Paridad, F. Faridani, A. Farid, A. Pizarro, M. Fiorentino and S. Manfreda, Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model, Hydrology 2019, 6, 44 (doi: 10.3390/hydrology6020044), 2019. [pdf]