AUTOIDRO – Calcolo AUTOmatizzato degli estremi IDROlogici

La stima della massima portata al colmo ovvero della massima pioggia corrispondente ad un prefissato tempo di ritorno rappresenta un elemento indispensabile per poter procedere ad un corretto programma di interventi per la difesa del suolo, la protezione idrogeologica e la prevenzione di catastrofi naturali. La finalità di questo lavoro è fornire uno strumento di natura essenzialmente didattica per il calcolo degli estremi idrologici nelle varie regioni italiane. Il lavoro raccoglie al suo interno l’esperienza degli studi svolti dal GNDCI e pubblicati nei rapporti Va.Pi. relativi ai vari compartimenti italiani. Questi studi sono divenuti per molte regioni italiane lavori di riferimento per la stesura dei piani di assetto idrogeologico. Sulla scorta di tale esperienza nasce il foglio Excel per il calcolo degli estremi idrologici denominato AUTOIDRO. Esso può essere utilizzato per una stima speditiva della portata al colmo di piena nell’ambito dei progetti dei corsi universitari delle discipline di Costruzioni Idrauliche, Idrologia, Impianti Speciali Idraulici, Protezione Idraulica del Territorio, ecc.

AUTOIDRO consente di definire rapidamente, mediante l’identificazione della zona ed altre informazioni facilmente reperibili (e.g., area drenata del bacino, quota media del bacino e lunghezza dell’asta principale), le portate di progetto con assegnato periodo di ritorno e la curva di possibilità pluviometrica riferita alla zona selezionata. Queste informazioni sono fondamentali per una corretta progettazione di opere che interagiscono con il sistema fluviale o che servono alla regimazione delle acque pluviali.

How to cite: Manfreda, S., L. Giuzio, V. Iacobellis, A. Sole, Guida tecnica al calcolo delle portate al colmo di piena (con software), Errecci Editore, pp. 57, (ISBN: 978-88-89970-61-4), 2011.  

Il software allegato alla pubblicazione è scaricabile gratuitamente mediante il link contenuto in calce.

CONFRONTO DI DIFFERENTI METODOLOGIE PER LA DETERMINAZIONE DELL’AREA CONTRIBUENTE AL PICCO DI PIENA

Negli ultimi anni la comunità scientifica ha sviluppato differenti modelli idrologici finalizzati all’approfondimento dei processi a scala di bacino; in particolare differenti tipi di concettualizzazione sono stati utilizzati per descrivere la variabilità spaziale dello stato di imbibizione dei suoli che assume un ruolo fondamentale per la previsione delle portate di ruscellamento superficiale. Iacobellis e Fiorentino (2000) hanno sviluppato un modello teoricamente derivato della distribuzione dei colmi di piena massimi annuali, basato sul concetto di area parziale contribuente al picco di piena, quest’ultima, fortemente influenzata dalla porzione di area satura che  si  forma  durante  uno  specifico  evento  di  precipitazione.  Successivamente Manfreda (2008) e Manfreda e Fiorentino (2008) hanno derivato un modello teorico per la valutazione del ruscellamento superficiale giornaliero e della conseguente distribuzione di probabilità della frazione di area satura di un bacino idrografico caratterizzato da una nota distribuzione della capacità di immagazzinamento del suolo. Il modello è basato sulla risoluzione di un’equazione stocastica differenziale  di  bilancio,  in  cui  l’eterogeneità  spaziale  del  bacino  è  tenuta  in  conto mediante  una  funzione  parabolica  della  distribuzione  della  capacità di immagazzinamento dell’acqua nel suolo usata nel modello concettuale di Xinanjiang (Zhao et al., 1980). I risultati hanno messo in evidenza che la densità di probabilità della frazione di area satura, fornendo una buona interpretazione dei processi che possono essere utilizzati per la previsione delle piene, può essere approssimata da una distribuzione di tipo gamma analogamente alla area parziale contribuente al picco di piena prima citata. Il confronto tra i due modelli è stato effettuato attraverso l’analisi di un set di bacini umidi, appartenenti alle regioni di Basilicata e Calabria, caratterizzati da differenti tipi di suolo e copertura vegetale.

How to cite: M. Fiorentino, A. Gioia, S. Manfreda, V. Iacobellis, CONFRONTO DI DIFFERENTI METODOLOGIE PER LA DETERMINAZIONE DELL’AREA CONTRIBUENTE AL PICCO DI PIENA, EdiBios, 2018. [pdf]

Comparison of different methods describing the peak runoff contributing areas during floods

In the last few years, the scientific community has developed several hydrological models aimed at the simulation of hydrological processes acting at the basin scale. In this context, the portion of peak runoff contributing areas represents a critical variable for a correct estimate of surface runoff. Such areas are strongly influenced by the saturated portion of a river basin (influenced by antecedent conditions) but may also evolve during a specific rainfall event. In the recent years, we have developed 2 theoretically derived probability distributions that attempt to interpret these 2 processes adopting daily runoff and flood ‐ peak time series. The probability density functions (PDFs) obtained by these 2 schematisations were compared for humid river basins in southern Italy. Results highlighted that the PDFs of the peak runoff contributing areas can be interpreted by a gamma distribution and that the PDF of the relative saturated area provides a good interpretation of such process that can be used for flood prediction.

How to cite: Gioia, A., S. Manfreda, V. Iacobellis, M. Fiorentino, Comparison of different methods describing the peak runoff contributing areas during floodsHydrological Processes, 31(11), 2041-2049 (doi: 10.1002/hyp.11169), 2017.  [pdf]

Performance of a Theoretical Model for the Description of Water Balance and Runoff Dynamics in Southern Italy

In the present paper, an analytical work for the description of the soil water balance and runoff production was adopted over a significant number of river basins belonging to a humid region of Southern Italy. The model is based on a stochastic differential equation, where the spatial heterogeneity of a basin is incorporated by a parabolic function describing the distribution of soil water storage capacity at the basin scale. The model provides an analytical description of the probability density function (PDF) of relative saturation of a basin as well as the PDF of daily runoff production. The proposed model includes five parameters that depend on climatic and soil characteristics. In particular, two parameters describe the rainfall process (α and λ), two characterize the distribution of soil water storage capacity (wmax and b), and the last is the soil water loss coefficient (V). Application of the model allowed the regionalization of model parameters based on physically consistent characteristics of the river basins. In particular, it was found that the soil water loss coefficient is strongly controlled by the fraction of forest cover of the river basin, while the parameter b, controlling the shape of the distribution of soil water storage capacity, is influenced by the basin topography.

How to cite: Gioia, A., S. Manfreda, V. Iacobellis, M. Fiorentino, Performance of a theoretical model for the description of the water balance and runoff dynamics in Southern ItalyJournal of Hydrologic Engineering, 19(6), 1113-1123, (doi: 10.1061/(ASCE)HE.1943-5584.0000879), 2014. [pdf]

Influence of infiltration and soil storage capacity on the skewness of the annual maximum flood peaks in a theoretically derived distribution

Understanding the spatial variability of key parameters of flood probability distributions represents a strategy to provide insights on hydrologic similarity and building probabilistic models able to reduce the uncertainty in flood prediction in ungauged basins. In this work, we exploited the theoretically derived distribution of floods model TCIF (Two Component Iacobellis and Fiorentino model; Gioia et al., 2008), based on two different threshold mechanisms associated to ordinary and extraordinary events. The model is based on the hypotheses that ordinary floods are generally due to rainfall events exceeding a constant infiltration rate in a small source area, while the so-called outlier events responsible for the high skewness of flood distributions are triggered when severe rainfalls exceed a storage threshold over a large portion of the basin. Within this scheme, a sensitivity analysis was performed with respect to climatic and geomorphologic parameters in order to analyze the effects on the skewness coefficient and provide insights in catchment classification and process conceptualization. The analysis was conducted to investigate the influence on flood distribution of physical factors such as rainfall intensity, basin area, and particular focus on soil behavior.

How to cite: Gioia, A., V. Iacobellis, S. Manfreda, and M. Fiorentino, Influence of infiltration and soil storage capacity on the skewness of the annual maximum flood peaks in a theoretically derived distributionHydrology and Earth System Sciences, 16, 937-951, (doi:10.5194/hess-16-937-2012), 2012. [pdf]

Influence of soil parameters on the skewness coe ffi cient of the annual maximum flood peaks

Understanding the spatial variability of key parameters of flood probability distributions represents a strategy to provide insights on hydrologic similarity and building probabilistic models able to reduce the uncertainty in flood prediction in ungauged basins. In this work, we exploited the theoretically derived distribution of floods TCIF (Gioia et al., 2008), based on two different threshold mechanisms associated respectively to ordinary and extraordinary events. The model is based on the hypotheses that ordinary floods are generally due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, responsible of the high skewness of flood distributions, are triggered when severe rainfalls exceed a storage threshold over a large portion of the basin. Within this scheme, a sensitivity analysis was performed in order to analyze the effects of climatic and geomorphologic parameters on the skewness coefficient. In particular, the analysis was conducted investigating the influence on flood distribution of physical factors such as rainfall intensity, soil infiltration capacity, and basin area, in order to provide insights in catchment classification and process conceptualization.

How to cite: Gioia, A., V. Iacobellis, S. Manfreda, and M. Fiorentino, Influence of soil parameters on the skewness coefficient of the annual maximum flood peaks, Hydrology and Earth System Sciences Discussions, 8, Pages 5559–5604 (doi: 10.5194/hessd-8-5559-2011), 2011. [pdf]

Flood quantiles estimation based on theoretically derived distributions: regional analysis in Southern Italy

A regional probabilistic model for the estimation of medium-high return period flood quantiles is presented. The model is based on the use of theoretically derived probability distributions of annual maximum flood peaks (DDF). The general model is called TCIF (Two-Component IF model) and encompasses two different threshold mechanisms associated with ordinary and extraordinary events, respectively. Based on at-site calibration of this model for 33 gauged sites in Southern Italy, a regional analysis is performed obtaining satisfactory results for the estimation of flood quantiles for return periods of technical interest, thus suggesting the use of the proposed methodology for the application to ungauged basins. The model is validated by using a jack-knife cross-validation technique taking all river basins into consideration.

How to cite: Iacobellis, V., A. Gioia, S. Manfreda, M. Fiorentino, Flood quantiles estimation based on theoretically derived distributions: regional analysis in Southern ItalyNatural Hazards and Earth System Sciences, 11, 673-695, (doi:10.5194/nhess-11-673-2011), 2011. [pdf]

Regional analysis of runoff thresholds behaviour in Southern Italy based on theoretically derived distributions

The analysis of runoff thresholds and, more in general, the identification of main mechanisms of runoff generation controlling the flood frequency distribution is investigated, by means of theoretically derived flood frequency distributions, in the framework of regional analysis. Two nested theoretically-derived distributions are fitted to annual maximum flood series recorded in several basins of Southern Italy. Results are exploited in order to investigate heterogeneities and homogeneities and to obtain useful information for improving the available methods for regional analysis of flood frequency.

How to cite: Fiorentino, M., A. Gioia, V. Iacobellis, and S. Manfreda, Regional analysis of runoff thresholds behaviour in Southern Italy based on theoretically derived distributionsAdvances in Geosciences, 26, 139-144, (doi:10.5194/adgeo-26-139-2011), 2011. [pdf]

Confronto fra i tempi di ritorno di piogge e portate di rilevante entità

Nel presente lavoro, viene analizzato il comportamento dei bacini idrografici durante eventi di piena per approfondire le dinamiche afflussi/deflussi. Le analisi sono condotte mediante simulazione idrologica in continuo utilizzando il modello DREAM accoppiato al modello IRP per la generazione di serie sintetiche di precipitazione. Tale approccio consente di portare in debita considerazione l’eterogeneità spaziale delle caratteristiche geomorfologiche, tessiturali dei suoli e della vegetazione, permettendo di estendere lo studio delle piene a periodi di ritorno alti prescindendo dall’estrapolazione di relazioni basate su brevi periodi di osservazione. Le caratteristiche delle distribuzioni di probabilità delle piene ed alcuni dei principali fenomeni che le influenzano sono analizzate sfruttando centinaia di eventi sintetici generati mediante il DREAM in due casi di studio con condizioni climatiche differenti.

How to cite: Fiorentino, M., A. Gioia, S. Manfreda, V. Iacobellis, Confronto di differenti metodologie per la determinazione dell’area contribuente al picco di piena, Tecniche per la Difesa dall’Inquinamento, Editoriale Bios, 2018. 

Best Fit and Selection of Theoretical Flood Frequency Distributions Based on Different Runoff Generation Mechanisms

Theoretically derived distributions allow the detection of dominant runoff generation mechanisms as key signatures of hydrologic similarity. We used two theoretically derived distributions of flood peak annual maxima: the first is the “IF” distribution, which exploits the variable source area concept, coupled with a runoff threshold having scaling properties; the second is the Two Component-IF (TCIF) distribution, which generalizes the IF distribution, and is based on two different threshold mechanisms, associated with ordinary and extraordinary events, respectively. By focusing on the application of both models to two river basins, of sub-humid and semi-arid climate in Southern Italy, we present an ad hoc procedure for the estimation of parameters and we discuss the use of appropriate techniques for model selection, in the case of nested distributions.

How to cite: Iacobellis, V., M. Fiorentino, A. Gioia, S. Manfreda, Best Fit and Selection of Theoretical Flood Frequency Distributions Based on Different Runoff Generation MechanismsWater, 2(2), 239-256, (doi:10.3390/w2020239), 2010. [pdf]