A Geostatistical Approach to Map Near-Surface Soil Moisture Through Hyperspatial Resolution Thermal Inertia

Thermal inertia has been applied to map soil water content exploiting remote sensing data in the short and long wave regions of the electromagnetic spectrum. Over the last years, optical and thermal cameras were sufficiently miniaturized to be loaded onboard of unmanned aerial systems (UASs), which provide unprecedented potentials to derive hyperspatial resolution thermal inertia for soil water content mapping. In this study, we apply a simplification of thermal inertia, the apparent thermal inertia (ATI), over pixels where underlying thermal inertia hypotheses are fulfilled (unshaded bare soil). Then, a kriging algorithm is used to spatialize the ATI to get a soil water content map. The proposed method was applied to an experimental area of the Alento River catchment, in southern Italy. Daytime radiometric optical multispectral and day and nighttime radiometric thermal images were acquired via a UAS, while in situ soil water content was measured through the thermo-gravimetric and time domain reflectometry (TDR) methods. The determination coefficient between ATI and soil water content measured over unshaded bare soil was 0.67 for the gravimetric method and 0.73 for the TDR. After interpolation, the correlation slightly decreased due to the introduction of measurements on vegetated or shadowed positions (r² = 0.59 for gravimetric method; r² = 0.65 for TDR). The proposed method shows promising results to map the soil water content even over vegetated or shadowed areas by exploiting hyperspatial resolution data and geostatistical analysis.

How to cite: Paruta, A., P. Nasta, G. Ciraolo, F. Capodici, S. Manfreda, N. Romano, E. Bendor, Y. Zeng, A. Maltese, S. F. Dal Sasso and R. Zhuang, A geostatistical approach to map near-surface soil moisture through hyper-spatial resolution thermal inertia, IEEE Transactions on Geoscience and Remote Sensing, (doi: 10.1109/TGRS.2020.3019200) 2020. [pdf]

An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources

The past decades have seen rapid advancements in space-based monitoring of essential water cycle variables, providing products related to precipitation, evapotranspiration, and soil moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle variability at regional to global scales, they are less suitable for sustainable management of local water resources, which needs detailed information to represent the spatial heterogeneity of soil and vegetation. The following questions are critical to effectively exploit information from remotely sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to the local scale using multiple sources and scales of EO data? How to explore and apply the downscaled information at the management level for a better understanding of soil-water-vegetation-energy processes? How can such fine-scale information be used to improve the management of soil and water resources? An integrative information flow (i.e., iAqueduct theoretical framework) is developed to close the gaps between satellite water cycle products and local information necessary for sustainable management of water resources. The integrated iAqueduct framework aims to address the abovementioned scientific questions by combining medium-resolution (10 m–1 km) Copernicus satellite data with high-resolution (cm) unmanned aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-data analytics with machine learning algorithms. This paper provides a general overview of the iAqueduct theoretical framework and introduces some preliminary results.

Concept Diagram

How to cite: Su, Z.; Zeng, Y.; Romano, N.; Manfreda, S.; Francés, F.; Dor, E.B.; Szabó, B.; Vico, G.; Nasta, P.; Zhuang, R.; Francos, N.; Mészáros, J.; Sasso, S.F.D.; Bassiouni, M.; Zhang, L.; Rwasoka, D.T.; Retsios, B.; Yu, L.; Blatchford, M.L.; Mannaerts, C. An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water 202012, 1495. [pdf]

Quantifying Long-term Land Surface and Root Zone Soil Moisture over Tibetan Plateau

It is crucial to monitor the dynamics of soil moisture over the Tibetan Plateau, while considering its important role in understanding the land-atmosphere interactions and their influences on climate systems (e.g., Eastern Asian Summer Monsoon). However, it is very challenging to have both the surface and root zone soil moisture (SSM and RZSM) over this area, especially the study of feedbacks between soil moisture and climate systems requires long-term (e.g., decadal) datasets. In this study, the SSM data from different sources (satellites, land data assimilation, and in-situ measurements) were blended while using triple collocation and least squares method with the constraint of in-situ data climatology. A depth scaling was performed based on the blended SSM product, using Cumulative Distribution Function (CDF) matching approach and simulation with Soil Moisture Analytical Relationship (SMAR) model, to estimate the RZSM. The final product is a set of long-term (~10yr) consistent SSM and RZSM product. The inter-comparison with other existing SSM and RZSM products demonstrates the credibility of the data blending procedure used in this study and the reliability of the CDF matching method and SMAR model in deriving the RZSM.

How to cite: Zhuang, R.; Zeng, Y.; Manfreda, S.; Su, Z. Quantifying Long-term Land Surface and Root Zone Soil Moisture over Tibetan Plateau. Remote Sens. 202012, 509. [pdf]

Estimating root zone soil moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model

Root zone soil moisture (RZSM) affects many natural processes and is an important component of environmental modeling, but it is expensive and challenging to monitor for relatively small spatial extents. Satellite datasets offer ample spatial coverage of near-surface (0-2 cm) soil moisture content at up to a daily time-step, but satellite-derived data products are currently too coarse in spatial resolution to use directly for many environmental applications, such as those for small catchments. This study investigates using passive microwave satellite soil moisture data products in a simple hydrologic model to provide root zone soil moisture estimates across a small catchment over a 2 year time-scale and the Eastern U.S. (EUS) at a 1 km resolution over a decadal time-scale. The physically based Soil Moisture Analytical Relationship (SMAR) is calibrated and tested with the Advanced Microwave Scanning Radiometer (AMSRE), Soil Moisture Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP) data products. The SMAR spatial model relies on maps of soil physical properties and is first tested at the Shale Hills experimental catchment in central Pennsylvania. The model meets a root mean square error (RMSE) benchmark of 0.06 cm3 cm-3 at 66% of the locations throughout the catchment. Then, the SMAR spatial model is calibrated at up to 68 sites (SCAN and AMERIFLUX network sites) that monitor soil moisture across the EUS region, and maps of SMAR parameters are generated for each satellite data product. The average RMSE for RZSM estimates from each satellite data product is < 0.06 cm3 cm-3. Lastly, the 1 km EUS regional RZSM maps are tested with data from Shale Hills, which was set aside for validating the regional SMAR, and the RMSE between the RZSM predictions and the catchment average is 0.042 cm3 cm-3. This study offers a promising approach for generating long time-series of regional RZSM maps with the same resolution of soil property maps.

How to cite: Baldwin, D., S. Manfreda, H. Lin, and E.A.H. Smithwick, Estimating root zone soil moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model, Remote Sensing11, 2013, 2019. [pdf]

On the Use of Unmanned Aerial Systems for Environmental Monitoring

Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.

How to cite: Manfreda, S., M. F. McCabe, P. E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, E. Ben-Dor, D. Helman, L. Estes, G. Ciraolo, J. Müllerová, F. Tauro, M. I. de Lima, J. L. M. P. de Lima, A. Maltese, F. Frances, K. Caylor, M. Kohv, M. Perks, G. Ruiz-Pérez, Z. Su, G. Vico, and B. Toth, On the Use of Unmanned Aerial Systems for Environmental MonitoringRemote Sensing, 10(4), 641; (doi:10.3390/rs10040641) 2018.  [pdf

PROGETTI COMPETITIVI

[2020-23] Coordinatore locale del progetto intitolato “La mitigazione del rischio idraulico in bacini costieri con casse di espansione in linea: approccio di dimensionamento integrato” finanziato dal Ministero dell’Ambiente e della Tutela del Territorio e del Mare sul tema progetti di ricerca finalizzati alla previsione e alla prevenzione dei rischi geologici. Coordinatore Nazionale Prof. Francesco De Paola (Budget totale 260.000,00 €).

[2019-22] Coordinatore italiano del progetto WATER JPI 2018 intitolato “An integrative information aqueduct to close the gaps between global satellite observation of water cycle and local sustainable management of water resources – iAqueduct”. Coordinatore Europeo Prof. Bob Su (Budget totale 1.247.018,00 €).

[2019-22] Coordinatore di unità di ricerca del progetto “SPRINt – Strategie integrate per la PRevenzione e il monitoraggio del rischio INcendi e la sensibilizzazione delle comunità”, Fondazione SUD (Budget totale 361.536,00 €).

[2017-18] Coordinatore del Progetto “Pietro della Valle” sul tema “Monitoraggio dello stato di imbibizione dei suoli in ambienti semiaridi” finanziato dal MIUR (Budget totale 9.422,00 €).

[2018] Componente del progetto REDES sul tema: Bridge scour in supercritical flows, Chilean Research Council (Budget totale 10.000,00 $).

[2017-21] Coordinatore europeo dell’Azione COST intitolata “Harmonization of UAS
techniques for agricultural and natural ecosystems monitoring
” (Budget 780.000,00 €).

[2014-19] Componente del progetto “Technologies to stabilize soil organic carbon and farm productivity, promote waste value and climate change mitigation – CarbOnFarm” LIFE12 ENV/IT/00719 (Budget totale 3.051.265,00 €).

Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model

Monitoring Surface Soil Moisture (SSM) and Root Zone Soil Moisture (RZSM) dynamics at the regional scale is of fundamental importance to many hydrological and ecological studies. This need becomes even more critical in arid and semi-arid regions, where there are a lack of in situ observations. In this regard, satellite-based Soil Moisture (SM) data is promising due to the temporal resolution of acquisitions and the spatial coverage of observations. Satellite-based SM products are only able to estimate moisture from the soil top layer; however, linking SSM with RZSM would provide valuable information on land surface-atmosphere interactions. In the present study, satellite-based SSM data from Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Soil Moisture Active Passive (SMAP) are first compared with the few available SM in situ observations, and are then coupled with the Soil Moisture Analytical Relationship (SMAR) model to estimate RZSM in Iran. The comparison between in situ SM observations and satellite data showed that the SMAP satellite products provide more accurate description of SSM with an average correlation coefficient (R) of 0.55, root-mean-square error (RMSE) of 0.078 m3 m-3 and a Bias of 0.033 m3 m-3. Thereafter, the SMAP satellite products were coupled with SMAR model, providing a description of the RZSM with performances that are strongly influenced by the misalignment between point and pixel processes measured in the preliminary comparison of SSM data.

How to cite: Gheybi, F., P. Paridad, F. Faridani, A. Farid, A. Pizarro, M. Fiorentino and S. Manfreda, Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model, Hydrology 2019, 6, 44 (doi: 10.3390/hydrology6020044), 2019. [pdf]

The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides

Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity-duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.

How to cite: Maurizio Lazzari, Marco Piccarreta, Salvatore  Manfreda, The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides, Natural Hazards and Earth System Sciences Discussions (doi: https://doi.org/10.5194/nhess-2018-371), 2018. [pdf]

Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks.
The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment – the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only
NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.

How to cite: Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor and Félix Francés, Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVIHydrology and Earth System Sciences (doi: 10.5194/hess-21-6235-2017) 2017. [pdf]

MY SIRR v.3.0

Minimalist agro-hYdrological model for Sustainable IRRigation management – soil moisture and crop dynamicsMY SIRR v.3.0 is a software written in python programming language with a simple Graphical User Interface (GUI) for quantitatively assess and compare agricultural enterprises across climates, soil types, crops, and irrigation strategies, accounting for the unpredictability of the hydro-climatic forcing.

Download from: https://github.com/ElsevierSoftwareX/SOFTX-D-15-00079

How to cite: Albano, R., S. Manfreda, G. Celano, MYSIRR: Minimalist agro-hYdrological model for Sustainable IRRigation management – soil moisture and crop dynamicsSoftwareX, 6, 107–117, (doi: 10.1016/j.softx.2017.04.00), 2017. [pdf]